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Abstract

In this paper, we explore the problem of training one-

look regression models for counting objects in datasets

comprising a small number of high-resolution, variable-

shaped images. We illustrate that conventional global av-

erage pooling (GAP) based models are unreliable due to

the patchwise cancellation of true overestimates and under-

estimates for patchwise inference. To overcome this limita-

tion and reduce overfitting caused by the training on full-

resolution images, we propose to employ global sum pool-

ing (GSP) instead of GAP or fully connected (FC) layers at

the backend of a convolutional network. Although computa-

tionally equivalent to GAP, we show through comprehensive

experimentation that GSP allows convolutional networks to

learn the counting task as a simple linear mapping problem

generalized over the input shape and the number of objects

present. This generalization capability allows GSP to avoid

both patchwise cancellation and overfitting by training on

small patches and inference on full-resolution images as a

whole. We evaluate our approach on four different aerial

image datasets – two car counting datasets (CARPK and

COWC), one crowd counting dataset (ShanghaiTech; parts

A and B) and one new challenging dataset for wheat spike

counting. Our GSP models improve upon the state-of-the-

art approaches on all four datasets with a simple architec-

ture. Also, GSP architectures trained with smaller-sized im-

age patches exhibit better localization property due to their

focus on learning from smaller regions while training.

1. Introduction

Increasingly complex and large deep learning architec-

tures are being devised to tackle challenging computer vi-

sion problems, such as object detection and instance seg-

mentation with hundreds of object classes [18, 21, 7]. How-

ever, it is becoming common to deploy highly complex

state-of-the-art architectures to solve substantially simpler

tasks. Object counting is one such task: counting cars on a

freeway or in a parking lot, counting people in a crowd,

and counting plants or trees from aerial images. While

it is possible to apply very powerful instance segmenta-

tion [12] or object detection [29] approaches to counting

problems, these architectures require detailed (and time-

consuming and tedious to collect) annotations, such as in-

stance segmentation masks or bounding boxes. However,

object counting is amenable to weaker labels, such as dot

annotations (one dot per instance) or a scalar count per im-

age. Devising simpler deep learning models for less com-

plex computer vision tasks has the benefit of less costly

ground-truth labeling, smaller sized networks, more effi-

cient training, and faster inference.

One-look regression models are a class of deep neural

network that are well matched to the comparatively simpler

problem of object counting. These models use a convo-

lutional front-end combined with fully-connected (FC) or

global average pooling (GAP) layers that end in a single

unit to generate a scalar count of the number of object in-

stances present in the image [3, 38, 2, 9]. Other variants of

this counting network use a final classification layer, where

the number of the output units are slightly more than the

maximum number of possible object instances in the input

[24]. This requires that the maximum number of object in-

stances are known a priori, which may be difficult when the

number of objects varies with the size of the input. There-

fore, in this paper, we focus only on the single output unit

models for object counting.

Counting datasets have two common characteristics that

complicate the training of one-look models. First, the train-

ing set typically consists of a few very high-resolution im-

ages. Despite the computational complexity, it might be

possible to train on full-sized images as a whole, but there is

a high probability of overfitting by blindly memorizing the

scalar counts because of the small number of training sam-

ples available. Second, images with variable resolution in a

single dataset are prevalent because they are often stitched

or cropped to a particular region of interest. Many architec-
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tures require a pre-defined size for training/test images, and

warping images to that pre-defined resolution could make

small object instances almost disappear or large object in-

stances become unrealistically large. In this way, downsam-

pling and/or warping of training images can make the count-

ing problem harder by increasing the ratio of resolution of

larger to smaller instances present in the image dataset.

A common solution to overcome the challenge of high-

resolution, variable-sized images is to use smaller sized,

randomly cropped “patches” from the high-resolution raw

training images to train the network. Dot annotations can

be counted to create an object count per patch, but be-

cause the full extent of the object is not annotated, it is

not possible to generate patches without partially cutting

the objects at the edge of the patch. This type of label

noise may be acceptable during training, but at test time,

when a total count is required for the high-resolution im-

age, tiled patches would need to be applied to the network

with global average pooling (GAP) layers in the backend

and the counts per tile summed. We demonstrate later in the

experiments section that using GAP with fixed-resolution,

smaller patches incorporates both per-patch underestimates

and overestimates. Aggregating the counts of all the patches

in a single image randomly cancels-out a large number of

such overestimates and underestimates; thus giving an ap-

parent impression of a reasonably accurate measure for each

image, but obscuring substantial per-patch inference errors.

The extent of patchwise cancellation of positive errors by

negative errors is random and depends on the pattern of

the collocation of the object instances in the images. Also,

for rectangular patches, per-patch overestimates and under-

estimates increase for images with objects not oriented in

a spatially vertical or horizontal fashion. We hypothesize

that all these shortcomings make the use of patchwise infer-

ence with GAP unreliable for counting objects with small

datasets of high-resolution images. Previous work has at-

tempted to resolve these patch-wise inference errors em-

pirically, by optimizing the stride of tiled patches based on

validation set performance [24]. However, this does not ad-

dress the fundamental limitation of partial object instances;

resulting in unavoidable per-patch counting errors, which

are then propagated to the estimate of the full image count.

Considering the complications of datasets with a small

number of high-resolution variable-sized images, an ideal

solution would be a particular kind of model that can be

trained with small-sized random patches (to reduce the

risk of overfitting or memorization) and then generalize its

performance over arbitrarily large resolution test samples.

In this paper, we devise such a model using a set of

traditional convolutional and pooling layers in the front-end

and replacing the fully connected (FC) layers or global

average pooling (GAP) layer with the new global sum

pooling (GSP) operation. We show that the use of this GSP

Figure 1. (Left) Sample image with multiple cropping shown us-

ing bounding boxes with different colors. (Right) Activations of

the first 48 elements sorted in descending order incurred by these

cropped samples after GSP operation shown using the correspond-

ing colors of the bounding boxes in the left. For consistency, sort-

ing indices of the full-resolution input are used to sort others. The

plot of the values demonstrates the fact of learning a linear map-

ping of the object counts by our GSP-CNN model regardless of

input shape.

layer allows the network to train on image patches and

infer accurate object counts on full sized images. Although

from a computational perspective, the summation operation

in GSP is very similar to the averaging operation in GAP,

GSP exhibits the non-trivial property of generalization for

counting objects over variable input shapes, which GAP

does not. To the best of our knowledge, this is the first work

introducing the GSP operation as a replacement of GAP

or FC layers. We evaluated GSP models on four different

datasets — two for counting cars, one for crowd counting,

and one for counting wheat spikes. Our experimental

results demonstrate that GSP helps to generate more local-

ized activations on object regions (Figure 2) and achieve

better generalization performance which is consistent with

our hypothesis.

Our paper makes the following contributions:

• We describe the limitations of existing architectural
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designs for object counting on datasets with fewer,

high-resolution training samples. With extensive ex-

perimentation, we demonstrate the patchwise cancel-

lation effect on per-patch overestimates and underes-

timates of using global average pooling (GAP) with

tiled patches. We argue that such randomization makes

GAP a fragile candidate for counting architectures.

• We propose global sum pooling (GSP) as an alternative

to GAP or FC layers as a remedy to the problems re-

garding variable resolution images, and overfitting on

small datasets of large images. We demonstrate that

GSP models can be trained on smaller random patches

and used for inference on full resolution images. This

is because the GSP models learn a mapping linear to

the number of objects regardless of input resolution,

which is impossible with GAP or FC layer models.

• We benchmark GSP on four heterogeneous (two car

parks, one crowd counting, and one wheat spike count-

ing) datasets. Our GSP model beats state-of-the-art

approaches with much better saliency mapping on all

these datasets. Results were obtained with a simple

convolutional front-end which demonstrates the sim-

plicity and efficacy of GSP for object counting.

2. Related Work

Much of the recent literature on object counting is

based on estimating different kinds of activation maps be-

cause these approaches are applicable to datasets with high-

resolution images. Lempitsky and Zisserman [19] incorpo-

rate the idea of per-pixel density map estimation followed

by regression for object counting. This regression approach

is further enhanced by [5] by adding an interactive user in-

terface. Fiaschi et al. [10] employ random forest to regress

the density map and object count. Fully convolutional net-

work [41] is also used for contextual density map estima-

tion irrespective of the input shape. Proximity map, which

is the proximity to the nearest cell center, is also estimated

in [42] as an alternative to traditional density map approxi-

mation. Another variant of density map is proposed in the

Count-ception paper [8], where the authors use fully con-

volutional network [22] to regress the count map followed

by scalar count retrieval adjusting the redundant coverage

proportional to the kernel size. Wheat spike images have

been previously investigated for controlled imaging envi-

ronments using density maps [26].

There also exists an extensive body of work on crowd

counting [1]. Here, we review some of the recent CNN

based approaches. Wang et al. [40] employed a one-look

CNN model first on dense crowd counting. Zhang et al. [43]

developed the cross-scene crowd counting approach. They

use alternative optimization criteria for counting and den-

sity map estimation. Also, instead of single Gaussian ker-

nels to generate a ground truth density map, they use multi-

ple kernels along with the idea of perspective normalization.

Cross-scene adaptation is done by finetuning the network

with training samples similar to test scenes. Similar to the

gradient boosting machines [11], Walach and Wolf [39] it-

eratively add additional computational blocks in their archi-

tecture to train on the residual error of the previous block,

which they call layered boosting. Shang et al. [33] use an

LSTM [14] decoder on GoogLeNet [36] features to extract

a patchwise local count and generate a global count from

them using FC layers. CrowdNet [6] uses the combination

of shallow and deep networks to acquire multi-scale infor-

mation in density map approximation for crowd counting.

Another approach [44] for multi-scale context aggregation

for density map estimation use multi-column networks with

different kernel sizes. Hydra CNN [25] employ three convo-

lutional heads to process image pyramids and combine their

outputs with additional FC layers to approximate the den-

sity map at a lower resolution. Switching CNN architecture

[32] proposes a switching module to decide among different

sub-networks to process images with different properties.

Most of the approaches described above attempt to ap-

proximate a final activation map under different names, i.e.

density map, count map, and proximity map, which is then

post-processed to obtain the count information; thus result-

ing in a multi-stage pipeline. In this regard, one-look mod-

els are simpler and faster than these map estimation ap-

proaches. The main idea behind using one-look regression

models [3, 2, 40, 38, 9, 24] for object counting is to uti-

lize weaker ground truth information like dot annotations,

in contrast to more sophisticated models for object detec-

tion [29, 27] or instance-level segmentation [12, 30, 28] that

require stronger and more tedious to collect ground truth la-

bels. The domain knowledge of spatial collocation of cars

in the car parks is exploited in the layout proposal network

[15] to detect and count cars. The COWC dataset paper [24]

uses multiple variants of the hybrid of residual [13] and In-

ception [37] architectures, called ResCeption, as the one-

look model for counting cars patchwise. During inference,

the authors determine the stride based on the validation set.

This kind of hybrid models are also used in [2] to estimate

plant characteristics from images. However, recent work

on heatmap regulation (HR) [4] describes the philosophical

limitation of using one-look models and tries to improve its

performance by regulating the final activation map with a

Gaussian approximation of the ground-truth activation map.

In this paper, using GSP and training with smaller samples,

we obtain similar final activation maps to HR without using

any extra supervision channel in our model.

3. Our Approach

To overcome the generalization challenges for object

counting from a small number of high-resolution, variable
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Figure 2. Sample image for car counting [15] along with superimposed activation heatmaps for different one-look regression models, from

left-to-right: original image, the baseline GAP model, our GSP model trained with full-resolution images, and GSP trained with 224 × 224

randomly cropped patches.

sized images, and to avoid the problem of partial object

counting while cropping random patches, we propose an

architecture that can learn to count from images regard-

less of their shape. Architectures with final FC layers pose

strict requirements about the input images’ shape, whereas

architectures that combine CNN with additional nonlin-

ear and normalization layers are more flexible. We take

inspiration from recent image classification architectures

[20, 13, 37, 16] that replace FC layers with a simple GAP

layer. Using GAP greatly reduces the number of param-

eters (to help reduce overfitting), emphasizes the convolu-

tional front-end of the models, permits training and testing

on variable size input images, and provides intuitive visual-

izations of the activation maps [45]. For an object counting

task, however, the averaging operation of GAP lacks the

ability to generalize over variable resolution input images.

The difference between GAP and GSP for object count-

ing can be illustrated by a hypothetical example. For sim-

plicity of illustration, here we consider an ideal environ-

ment where the resolution of object instances falls within

a fixed range over a dataset, but this is not a requirement

for the GSP approach. Also, without loss of generality, we

assume that objects are uniformly distributed, which means

that the number of objects within an image is expected to

scale with the image resolution. For example, if a W ×W

region contains C objects, then a mW ×mW region would

be expected to contain m
2
W objects (m is a scalar). If we

train a network containing a stack of convolution layers fol-

lowed by a GAP layer on W ×W samples, our models will

learn to generate the expected count of C with an equivalent

vector representation as the output of GAP. During infer-

ence, with a mW ×mW image, the last convolution layer

will generate m
2 adjacent, spatial feature responses, each

representing the expected count of C. This convolutional

representation is appropriate to predict an expected count

of m2C. However, the GAP layer will average over all the

m
2 spatial sub-regions and obtain an equivalent representa-

tion of C. Hence, the averaging operation is not suitable for

modeling the proportional scaling of the number of objects

with the size of input.

Another option might be to divide the variable resolution

input images into fixed size, adjacent, and non-overlapping

patches during inference and then sum up the count over

all of the filled patches to retrieve the final count. Compu-

tationally, such tiling preserves the efficiency of inference

in a single pass. Inference on overlapping patches with

density estimation is also possible [8], but quadratically in-

creases the computational complexity. Any patch-wise in-

ference scheme, however, has a significant limitation that

is unavoidable from the modeling perspective. During in-

ference, the network produces both overestimates and un-

derestimates over all the patches extracted from a single

image. For example, for a single image, the amount of

overestimates and underestimates are EO and EU , respec-

tively. Although the actual difference between ground truth

count and prediction is EO + EU , by summing up the patch

counts, we get an apparent error of |EO − EU |. Thus, the

measured difference on the whole image, in this case, de-

pends on the difference between overestimate EO and un-

derestimate EU , not on their absolute value. For example,

we will get a very low error even if EO and EU are quite

high but are almost equal. Thus, when aggregating the patch

count, overestimate and underestimate get nullified by each

other randomly on which the model has no control. We call

this effect “patchwise cancellation”. The amount of such

patchwise cancellation depends on various properties of the

dataset, such as the density and types of the objects, their

collocation patterns, their comparative resolution in the im-

age, and so on. In the experiments section, we show that al-

though for GAP models used on adjacent patches for infer-

ence, the difference between ground truth and summed up

prediction is sometimes reasonably small, the actual overes-

timate and underestimate are pretty high, validating our ex-

planation of patchwise cancellation. Therefore, GAP with

adjacent patches is not a reliable solution for inference on

variable-sized, high-resolution images.

Instead of average-pooling the final feature maps, we

propose a summation or mere aggregation of the input over

the spatial locations only. From the previous example, this

aggregation of m
2 similar sub-regions, each with a count

of C, would produce the desired expected value of m
2C.

Following the nomenclature of GAP, we call this opera-

tion global sum pooling (GSP). Although GAP and GSP

are computationally similar operations, conceptually GSP

provides the ability to use CNN architectures for general-

ized training and inference on variable shaped inputs in a
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Table 1. Statistics of the datasets used for evaluation

Dataset
#Images

(Train, Test)
Resolution

Total Count

(Train, Test)

Range of Count

(Train, Test)

CARPK (989, 459) (720 × 1280) (42274, 47500) ([1, 87], [2, 188])

ShanghaiTech-A (300, 182) (200×300) – (1024×992) (162413, 78862) ([33, 3138], [66, 2256])

ShanghaiTech-B (400, 316) (768 × 1024) (49151, 39121) ([12, 576], [9, 539])

COWC (32, 20) ∼(18k × 18k) – (2k × 2k) (37890, 3456) ([45, 13086], [10, 881])

Wheat-Spike (10, 10) ∼(1000, 3000) (10112, 9989) ([796, 1287], [749, 1205])

simple and elegant way. Moreover, due to the single pass

inference regardless of input resolution, GSP does not suf-

fer from patchwise cancellation.

Linear mapping: Learning to count regardless of the

input image shape necessarily means that the convolutional

front-end of the network should learn a linear mapping task,

where the output vector of GSP will scale proportionally

with the number of objects present in the input image. Fig-

ure 1 shows a sample 720 × 1280 image from the CARPK

[15] aerial car counting dataset. On the right of Figure 1, we

plot the largest 48 activations of the 512-vector output of the

GSP layer of our model described later, for different-sized

sub-regions of the same sample image. Here, the elements

are sorted in descending order for the full resolution image,

and the same ordering is used for the activations of the sub-

regions. The model producing these activations was trained

on 224 × 224 randomly cropped samples. From this figure,

it is evident that our model is able to learn a linear map-

ping function from the image space to the high-dimensional

feature space, where the final count is a simple linear re-

gression or combination of the extracted feature values.

Weak instance detector and region classifier: An ad-

vantage of training on small input sizes is that it guides the

network to behave like a weak object instance detector even

though we only provide weak labels (a scalar count per im-

age region). Training on sub-regions of a large input image

helps the network to better disambiguate the true object re-

gions from the object-like background sub-regions, result-

ing in improved performance. For example, when train-

ing the network with full images, all of which have a non-

zero object count, the network never faces a complete back-

ground sample from which it can extract background infor-

mation similar to any binary region classification problem.

On the other hand, when we train with small randomly-

cropped regions of the input image many background-only

samples are fed to the network, instantiating a more rigor-

ous learning paradigm even with weak count labels. Class-

activation map (CAM) [45] visualizations illustrate that the

GSP model trained with small sub-regions better captures

localization information (Figure 2). Training the GAP or

GSP models with full-resolution images results in a less

uniform distribution of activation among object regions and

less localized activations inside object regions as compared

to the GSP model trained with smaller patches.

Architecture: We attach a GSP layer after the convolu-

tional front-end of VGG16 [34] model pretrained on Ima-

geNet [31]. GSP produces a 512-dimensional vector, which

is converted to a scalar count by a linear layer. We faced

no problems with the potential numerical instability caused

by large, unnormalized values after spatial summation, even

when training the GSP models with full resolution images.

4. Experiments

Datasets: We evaluate object counting with GSP on

four datasets: CARPK [15] (overhead view of different car

parks), ShanghaiTech [44] (crowd images collected from

the web and streets of Shanghai), COWC [24] (overhead

view of cars in residential areas and highways), and a wheat

spike (WS) dataset [17] (overhead view of mature wheat

plants). CARPK and ShanghaiTech-B contain constant res-

olution images, whereas ShanghaiTech-A, COWC, and WS

have large images with variable resolutions. All datasets

have comparatively few training and test images. Statistics

of these datasets are listed in Table 1.

Metrics: We adopt the evaluation metrics from MCNN

[44] and COWC [24] papers along with one additional met-

ric: the percentage of MAE over expected ground truth,

which we call the relative MAE (%RMAE) (Equation 1).
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
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Mean Absolute Error (MAE) =
∑

i
|ŷi−yi|

N

%MAE =

∑
i
|ŷi−yi|

Nyi

× 100

Relative MAE (%RMAE) = MAE×N∑
i
yi

× 100

Root-Mean-Square Error (RMSE) =

√∑
i
(ŷi−yi)

2

N

%RMSE =

√

∑
i
(ŷi−yi)

2

Ny2

i

× 100

(1)

Models & Training: We train both GSP and GAP

models on full-resolution images and on randomly cropped

patches of resolutions 224, 128, 96, and 64. For GSP mod-

els, inference is done on full resolution images regardless

of their shape and input size used at training, which is

not possible for GAP models. For GAP models, we pro-

vide error metrics in two forms. First, we report errors

over the cumulative patch counts that we denote by GAP-

C (GAP-Cumulative). However, as described before, such

error is a misinterpretation of the actual per patch error of

the GAP models. Therefore, another error is estimated per

tiled patch and all the per patch errors over the single im-
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Figure 3. Activation maps for CARPK generated by the GAP-Full

(left), GSP-224 (middle), and GAP-224(right) models. Activa-

tions are more uniformly distributed and more concentrated inside

object regions for the GSP-224 model.

Table 2. GSP-GAP comparison on CARPK dataset
Input Type MAE RMSE %MAE %RMSE %RMAE

Full
GAP 19.61 21.65 23.78 42.87 18.95

GSP 32.94 36.23 39.46 70.91 31.83

224

GAP-C 7.65 9.59 9.34 15.65 7.39

GAP-PS 19.20 21.42 19.01 26.38 16.67

GSP 5.46 8.09 12.21 44.36 5.28

128

GAP-C 8.66 11.30 11.90 26.64 8.37

GAP-PS 22.14 25.94 21.43 34.05 17.88

GSP 6.70 10.21 8.74 19.15 6.48

96

GAP-C 10.72 13.63 17.23 49.35 10.36

GAP-PS 44.41 48.49 39.23 54.88 32.89

GSP 10.63 11.37 22.27 62.87 10.27

64

GAP-C 23.20 27.78 42.16 115.61 22.42

GAP-PS 52.81 57.24 52.51 110.44 34.98

GSP 32.09 36.02 31.64 34.39 31.01

Table 3. Results on CARPK dataset
Method MAE RMSE

YOLO [27, 15] 48.89 57.55

Faster R-CNN [29, 15] 47.45 57.39

One-Look Regression [24, 15] 59.46 66.84

LPN [15] 13.72 21.77

HR [4] 7.88 9.30

Ours (GSP-224) 5.46 8.09

age are summed up under the tag of GAP-PS (GAP-Patch-

Summed).

In order to train on image patches, we compute a count

per patch based on the number of central object regions

within the patch. The CARPK dataset provides bounding

boxes, which we shrink down to 25% along each dimen-

sion and to define a central region for each car instance.

The shrinking prevents object regions from overlapping and

makes it so that we only count objects that are mostly inside

the cropped patch. The ShanghaiTech, COWC, and Wheat-

Spike datasets provide dot annotations appropriate to train

our models.

CARPK dataset: For this car park dataset, we found

that GSP models trained with 128 × 128 and 224 × 224

samples perform much better than the same model trained

with smaller patches, like 64 × 64 and 96 × 96 (Table 3).

The reason for GAP-C showing apparently lower error is

the patchwise cancellation of patchwise overestimate and

underestimate of GAP models which is evident from the

numerics of GAP-PS.

Figure 3 compares CAM heatmaps superimposed on

original images for the baseline GAP-Full model and our

best performing GSP-N model and GAP-N (N=224 for

both). The activation maps of the GAP model are variable

over the object regions, indicating that some of the objects

are being highly emphasized than others, whereas the GSP-

224 activations are more uniform, showing that all the in-

stances are getting more or less equal attention from the net-

work. Moreover, the GSP-224 activations better localized

within object sub-regions than GAP model, which demon-

strates that GSP-N models with small N work as a better

object detector or binary region classifier than the baseline

models.

We believe that the poor performance of GSP-N models

for smaller N (64 and 96) is not a characteristic of the model

itself. Instead, the poor performance can be attributed to

the training procedure that we followed in this paper. As

already stated, we shrink the bounding boxes for CARPK

dataset to disambiguate the overlapping bounding boxes.

However, such shrinking poses restrictions on using arbi-

trarily small sample sizes in training. If the patch size is

close to the object resolution (the average resolution of the

bounding boxes in the training set of CARPK dataset is

about 40 pixels) and the objects are close together (which

cars are in a parking lot), a patch is likely to include one

complete object with several other instances partially cut

at the edge of the patch. Because we disambiguate object

counts by shrinking the boxes, depending on the relative ori-

entation between the object and its encompassing box, and

its portion inside the cropped patch, it might be taken into

account for counting or not. Therefore, this aspect of our

training paradigm is a bit randomized. For comparatively

larger sample size, such as 128 and 224, we anticipate that

this problem of random consideration of the partial objects

in the border is less frequent than the smaller sized patches,

such as 64 and 96. In this regard, the optimal sample size

depends on the average resolution of the object instances

and their relative placement in the images of a particular

dataset.

ShanghaiTech dataset: This is the largest crowd count-

ing dataset in terms of the number of counts (Table 1). It

comprises two parts – part A images are randomly collected

from the web and part B is acquired from the busy streets of

Shanghai. Table 4 and 5 enlist the comparative performance

of GSP and GAP models on these subsets. Table 6 reports

the comparison with state-of-the-art approaches.

Our GSP-224 (part A) and GSP-128 (part B) models out-

perform state-of-the-performance approaches. Note that,
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Table 4. GSP-GAP comparison on ShanghaiTech-A dataset
Input Type MAE RMSE %MAE %RMSE %RMAE

Full
GAP 143.13 199.79 43.21 64.84 33.09

GSP 153.38 259.04 31.98 38.91 35.46

224

GAP-C 83.50 124.39 23.01 34.89 19.31

GAP-PS 104.13 140.67 28.03 37.37 24.08

GSP 70.69 103.58 19.66 29.37 16.34

128

GAP-C 83.75 124.79 23.28 34.27 19.36

GAP-PS 113.31 148.58 30.63 38.50 26.20

GSP 71.19 111.86 18.73 29.28 16.46

96

GAP-C 86.81 124.88 23.31 30.71 20.07

GAP-PS 127.63 162.94 33.35 37.79 29.51

GSP 78.25 116.69 19.87 27.21 18.09

64

GAP-C 100.69 140.53 26.87 33.80 23.28

GAP-PS 160.38 197.79 42.16 45.99 37.08

GSP 107.81 151.72 29.98 37.97 24.93

Table 5. GSP-GAP comparison on ShanghaiTech-B dataset
Input Type MAE RMSE %MAE %RMSE %RMAE

Full
GAP 12.91 20.19 13.44 21.66 10.45

GSP 12.26 19.49 12.01 19.56 9.92

224

GAP-C 9.70 16.03 7.69 10.16 7.84

GAP-PS 18.44 24.04 15.87 17.38 14.91

GSP 9.96 16.67 8.07 10.71 8.06

128

GAP-C 10.24 16.81 8.43 11.34 8.29

GAP-PS 24.05 30.31 21.24 22.76 19.45

GSP 9.13 15.94 7.05 9.24 7.39

96

GAP-C 11.16 17.60 9.31 11.93 9.03

GAP-PS 28.73 34.74 25.49 26.76 23.24

GSP 9.48 15.40 7.70 10.21 7.67

64

GAP-C 15.94 21.57 15.69 18.69 12.90

GAP-PS 39.06 46.88 35.30 36.75 31.60

GSP 14.35 22.95 12.44 15.85 11.61

Table 6. Results on ShanghaiTech dataset

Method
Part A Part B

MAE RMSE MAE RMSE

CS-CNN [43] 181.8 277.7 32.0 49.8

MCNN [44] 110.2 173.2 26.4 41.3

FCN [23] 126.5 173.5 23.76 33.12

Cascaded MTL [35] 101.3 152.4 20.0 31.1

Switching-CNN [32] 90.4 135.0 21.6 33.4

Ours (GSP-224 and -128) 70.7 103.6 9.1 15.9

Table 7. GSP-GAP comparison on COWC dataset

Input Type MAE RMSE %MAE %RMSE %RMAE

224
GAP-C 17.54 22.98 36.47 50.05 10.15

GSP 8.85 13.01 10.70 14.99 5.12

128
GAP-C 20.05 43.18 13.89 17.72 11.60

GSP 8.45 13.09 12.22 17.84 4.89

96
GAP-C 15.45 25.64 10.44 11.99 8.94

GSP 8.20 12.53 11.13 16.38 4.75

64
GAP-C 24.34 45.16 19.30 24.09 14.09

GSP 11.15 23.61 5.72 8.43 6.45

although GAP models apparently provide good accuracy,

their per patch error is pretty high indicating a consider-

able amount of patchwise cancellation. This is also evident

from Figure 4. In this figure, both the best performing GSP

and GAP models show similar saliency maps validating our

claim that patchwise cancellation is heavily responsible for

the comparatively poor performance of GAP models.

Figure 4. (Left) Saliency maps generated by the best GSP models

on ShanghaiTech-A (top) and -B (bottom) datasets. (Right) Same

for the best GAP models. GSP and GAP models exhibit similar

activations, except GSP models are free from patchwise cancella-

tion effect due to single inference on full image.

Figure 5. Superimposed activation maps for GSP-64 (left) and

GSP-224 (right) on the cropped image of COWC dataset. Acti-

vations are better localized the GSP-64 model.

Table 8. Results on COWC dataset
Method %MAE %RMSE

ResCeption [24] 5.78 8.09

ResCeption taller 03 [24] 6.14 7.57

Ours (GSP-64) 5.72 8.43

COWC dataset: COWC contains very few train-

ing images (32) and the image sizes vary substantially

(2220 × 2220 to 18400 × 18075), therefore it is an ideal

test case for the main features of GSP. Unlike the parking

lot datasets, the COWC dataset contains images covering

highways and residential areas and therefore cars in these

images often appear to be entirely isolated objects in the

roads or highways or parked in the residential streets. Each

pixel covers 15 cm, resulting in the resolution of the cars

ranging from 24 to 48 pixels. Because of the sparsity of the

objects in the ultra-high-resolution training images, we ex-

tract ∼ 8000 samples of resolution 288 × 288 centered on
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Table 9. Results on Wheat-Spike dataset
Input Type MAE RMSE %MAE %RMSE %RMAE

Full
GAP 132.25 153.77 13.82 16.40 13.24

GSP 161.63 178.11 16.16 17.81 16.18

224

GAP-C 82.19 92.41 8.43 9.45 8.23

GAP-PS 189.5 195.06 17.94 18.36 17.85

GSP 108.19 134.01 10.37 12.38 10.83

128

GAP-C 91.00 106.07 9.45 11.07 9.11

GAP-PS 279.75 284.67 24.93 25.08 24.92

GSP 85.00 108.87 8.05 9.95 8.51

96

GAP-C 75.38 88.23 7.83 9.37 7.55

GAP-PS 351.50 356.98 30.34 30.52 30.26

GSP 80.00 100.63 7.94 9.93 8.01

64

GAP-C 87.50 99.02 9.19 10.46 8.76

GAP-PS 514.00 519.63 41.29 41.49 41.07

GSP 111.38 130.07 11.23 13.01 11.15

Figure 6. Cropped sample images from Wheat-Spike dataset (top)

with superimposed CAM generated by GSP-Full (middle) and

GSP-96 (bottom) models.

object sub-regions from the images prior to training. We do

this to avoid training on a large number of negative samples

that would be the case for random cropping.

For COWC, we could not provide per patch error met-

rics for GAP models in Table 7 since the test set contains

only scalar counts as the ground truth. The smallest patch

size (GSP-64) provides comparable performance to previ-

ously published results (Table 8). We also see that the acti-

vations for GSP-64 are more concentrated on the objects in

the image compared to that of GSP-224 (Figure 5). This ob-

servation is consistent with our claim that the GSP models

trained with smaller sample size tend to localize objects bet-

ter, particularly when they are relatively isolated from each

other.

Wheat-Spike dataset: This dataset [17] is a compar-

atively challenging one for object counting because of the

irregular placement or collocation of wheat spikes. Out of

10 training samples, we use 8 for training and 2 for valida-

tion. Like COWC, the Wheat-Spike dataset is an ideal case

study for GSP because of the low number of high-resolution

training samples. Since the images are high-resolution and

sub-regions inside a single image vary quite a bit in terms of

brightness, perspective, and variable object shape resulting

from natural morphology and wind motion, there are many

features inside a single image that any suitable architecture

should exploit without memorization or overfitting.

Table 9 reports the comparative performance of GSP and

GAP models on this dataset. Although the summed up

count for GAP seems to be more accurate than the corre-

sponding GSP models, the surprisingly high aggregate of

per-patch error again explains the effect of patchwise can-

cellation of under/overestimates with GAP models.

Also, the error for the GSP model trained with full-

resolution images is quite high – 161.63, about 16% MAE

compared to the average count of 1000. GSP-96 provides

the best performance with MAE of 80.00 (8% of aver-

age count). Figure 6 shows cropped samples, their super-

imposed activation maps from GSP-Full model (middle),

and GSP-96 (right). The GSP-96 model is able to identify

salient regions in the image well, but for GSP-Full models,

it tries to blindly memorize the count from only eight high-

resolution images, which is clearly evident from the very

uniform heatmap distribution all over the image regardless

of foreground and background.
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5. Conclusion and Future work

In this paper, we introduce the global sum pooling op-

eration as a way to train one-look counting models without

overfitting on datasets containing few high-resolution im-

ages. With detailed experimental results on several datasets,

we show that our GSP model, trained with small numbers of

input samples, provides more accurate counting results than

existing approaches. Also, when the GSP model is trained

on small patches, it indirectly receives a weak supervision

regarding object position and learns to localize objects bet-

ter. This is also true for a GAP model, but it lacks the ca-

pability to infer counts from full-resolution test images and

suffers from high per-patch errors for patchwise inference.

This makes GAP unreliable for object counting on variable-

sized, high-resolution images. Although we have only ad-

dressed object counting in this study, we believe that GSP

could be applied to other computer vision tasks, such as

classification or object detection. For these tasks, we expect

that the scaling property of GSP may be able to utilize the

features of image sub-regions over multiple spatial scales

better than models that employ GAP or FC layers. In that

case, the requirement for fixed-resolution images for many

object detection or classification models can be eliminated.

We plan to investigate these directions as future work.
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